

- □ 6月25日,中国标准动车组正式命名为"复兴号"
- □ 6月26日,复兴号动车组在京沪高铁两端的北京南 站和上海虹桥站双向首发
 - 9月21日起,全国铁路调整新运行图,复兴号列车将在京沪高铁率先实现350公里时速运营,届时我国将成为世界高铁商业运营速度最高的国家

第一部分 高铁技术创新总体情况

第二部分 高铁技术创新主要成果

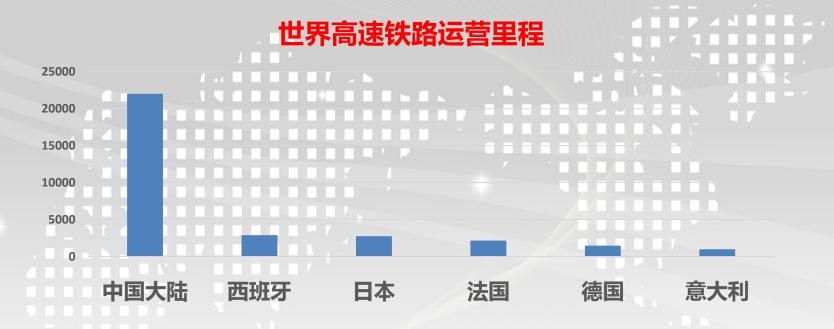
第三部分 重大科研攻关主要内容

第四部分 高铁技术创新主要体会

第五部分 高铁技术发展未来趋势

总体情况

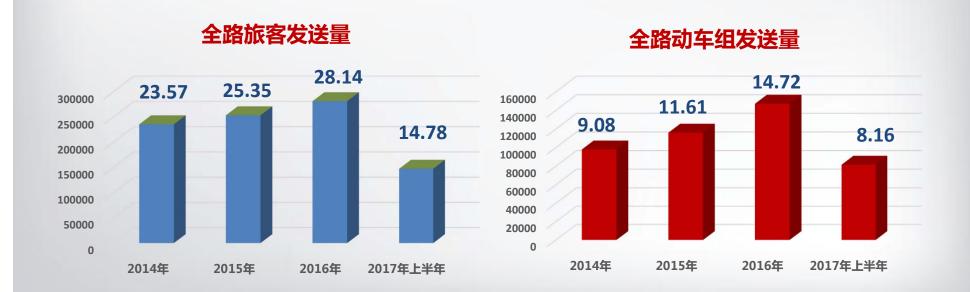
持续技术创新 驱动高铁发展



在推进高铁技术创新任务中,以掌握核心技术、从根本上摆脱对外依赖为目标,全面推进高铁核心技术自主创新,构建形成了全面拥有自主知识产权和世界先进水平的高铁技术体系,我国高铁总体技术水平进入世界先进行列,部分领域达到世界领先水平。

根据国外权威统计,截至2016年底,全世界高速铁路运营里程总计约 3.5万公里,其中中国大陆高速铁路运营里程2.2万公里,占全世界的 62.8%,位居世界第一,远超其他国家和地区高速运营里程总和。

西班牙、日本、法国、德国、意大利分列第二至第六位,高速铁路运营 里程分别为2871公里、2734公里、2142公里、1451公里、963公里。


全路及动车组旅客发送量

2016年,全国铁路旅客发送量28.14亿人次,较2015年增长11.0%;

2016年,全国铁路动车组旅客发送量14.72亿人次,较2015年增长26.4%;

2017年上半年,全国铁路发送旅客量14.78亿人次,同比增长9.9%。

2017年上半年,全国铁路动车组旅客发送量8.16亿人次,同比增长20.2%。

持续技术创新 驱动高铁发展

2002年,时速200公里秦沈客运专线建 04 成,"中华之星"动车组在秦沈客运专 线创造了每小时321.5公里的试验速度。

第一阶段 技术积累阶段

1997年起连续6次对既有线进行大面积提速,为发展高铁积累了实践经验。

02

03

1993年,国家科委、计委、经委、体改委和铁道部组织专家开展京沪高铁前期研究,并把建设建议上报国务院。

01

1992年,原铁道部提出研究开发高速客运技术 和建设时速200公里以上高速铁路。

持续技术创新 驱动高铁发展

第二阶段

积极推进阶段

04

02

05

03

01

荣获2015年度国家科技进步奖特等 奖,我国高铁技术水平实现大幅度 提升。

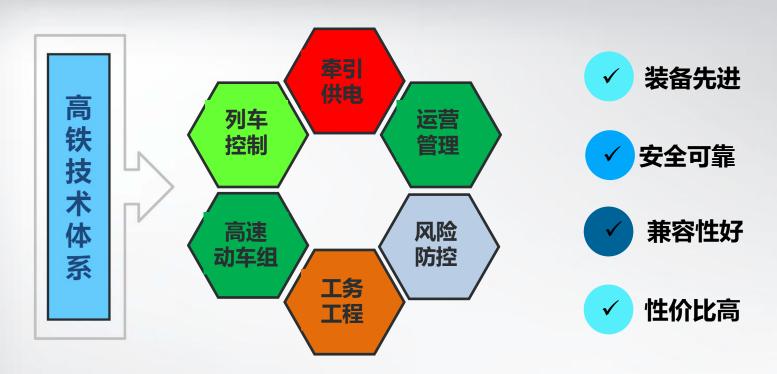
2011年6月,京沪高铁开通运营,实现多项高铁技术创新突破

按照"引进先进技术、联合设计生产、打造中国品牌"方针,立足国情路情,发挥后发优势,通过原始创新、集成创新、引进消化吸收再创新,实现了高铁主要技术装备在国内设计制造。

2008年8月,我国第一条时速350公里高铁—京津城际高铁开通运营,初步形成了时速300~350公里的高铁技术体系。

2004年1月,国务院审议通过《中长期铁路网规划》,把发展高速铁路作为重要内容。

党的十八大以来,铁路部门围绕实现高铁关键技术全面自主化,满足我国高铁运用环境和"走出去"需求的目标,持续推进高铁技术创新,实现了对引进技术的全面消化吸收,使原创技术得到整体完善和提升,在技术高度和运营业绩上均超越了原创国。


同时以研制中国标准动车组为龙头,大力推进高铁关键技术自主 创新,形成了具有中国特色、全面拥有自主知识产权的高铁成套技术 装备和技术体系。

高铁技术创新

主要成果

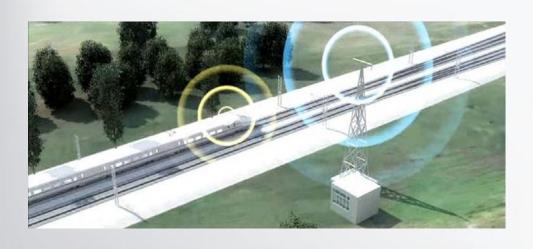
中国铁路立足于提高自主创新能力,完善技术创新体系,推进关键装备自主化,形成了涵盖工务工程、高速动车组、列车控制、牵引供电、运营管理、风险防控六大领域的高铁技术体系。我国高铁技术具有装备先进、安全可靠、兼容性好、性价比高等综合优势,总体技术水平已步入世界先进行列。

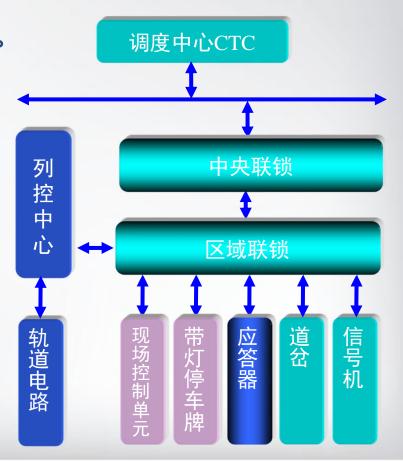
一、高铁工务工程

攻克了一系列世界性技术难题,系统掌握了高铁线路工程设计、施工、养护成套技术,采用基床和路基强化技术、无砟轨道、无缝道岔、跨区间超长无缝线路等,研发了具有自主知识产权的高速铁路CRTSⅢ型板式无砟轨道,为高标准、高质量建造高铁提供了重要技术支撑。

二、高速动车组技术

成功研制了拥有完全自主知识产权的中国标准动车组,在动车组关键技术上实现重要突破,在牵引、制动和网络等系统上实现完全自主编程,整车性能及关键系统技术均达到国际先进水平,具有运能大、能耗低、污染小、安全舒适等优势。





三、高铁列车控制技术

开展列控系统自主化工作,研发了满足时速200~250公里运行要求的 CTCS-2级列控系统和满足时速300~350公里运行要求的CTCS-3级列控系

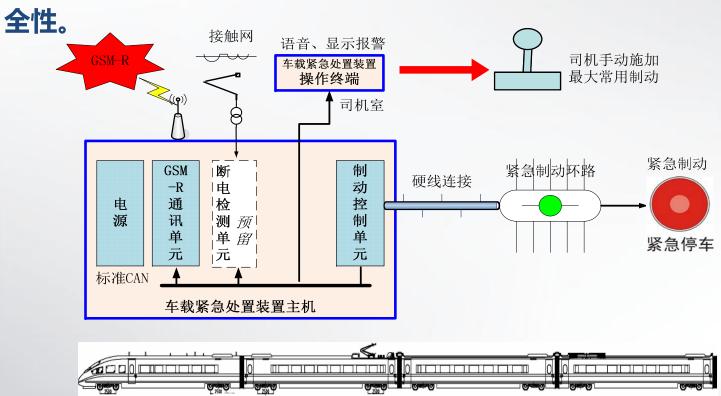
统,实现了设计最小列车追踪间隔3~5分钟。

四、高铁牵引供电技术

研发了大张力接触网系统和牵引供电综合自动化系统,保证了高速运行条件下牵引供电系统的安全性和可靠性。大张力全补偿链型悬挂等接触网新技术应用,实现了高速动车组重联双弓稳定受流,填补了世界高铁牵引供电技术的空白。

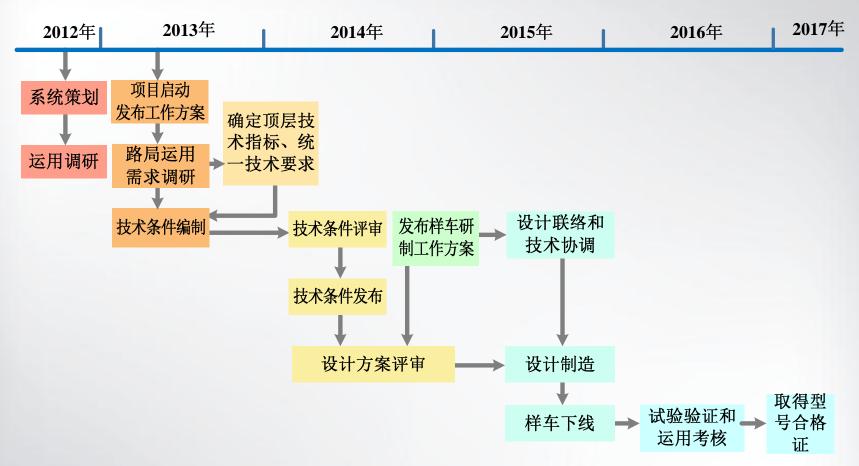
五、高铁运营管理技术

研究解决了动车组跨线运行、不同速度级动车组并线运行等调度难题,构建了高铁运营调度指挥体系,保证了高铁网有序高效运行。研发应用了综合旅客服务系统及12306互联网售票系统,近7亿人通过该系统买票,高峰期日均点击量超过30亿次,是世界上点击量最大的系统之一。



六、高铁安全风险防控技术

自主研发高铁设备检测维护和灾害监测预警系统,构建了全方位、全过程、全天候高铁安全风险防控体系,我国高铁具有极高安


重大科研攻关

主要内容

中国标准动车组技术攻关

"复兴号"中国标准动车组于2016年10月26日结束60万公里的运用考核,进行解体检查,2017年1月3日获得国家铁路局颁发的型号合格证。

中国标准动车组具有以下特点:

- 一是自主研发,正向设计,关键技术领域达到世界先进水平,与世界高速动车组知名品牌处于同一级别。
- 二是自主创新,在安全、列车信息管理、可靠性、节 能环保等方面实现了新的提升。
- 三是采用中国标准,兼容国际标准,全面拥有自主知识产权。

四是实现了统型和互联互通。实现了不同厂家动车组 的重联运行。

零部件统型

开展零部件统型研究,完成包含11大系统的96项。

互联互通

顶层技术条件要求,可 分解为重联、救援、回 顶层功能要求 送、互操作四部分功能 要求。该功能需通过解 决互联、互通、互操作 问题实现。

功能分解

重联

救援

互联互通

回送

互操作

实现方式

互联

统一机械连接接口 实现物理互联

互通

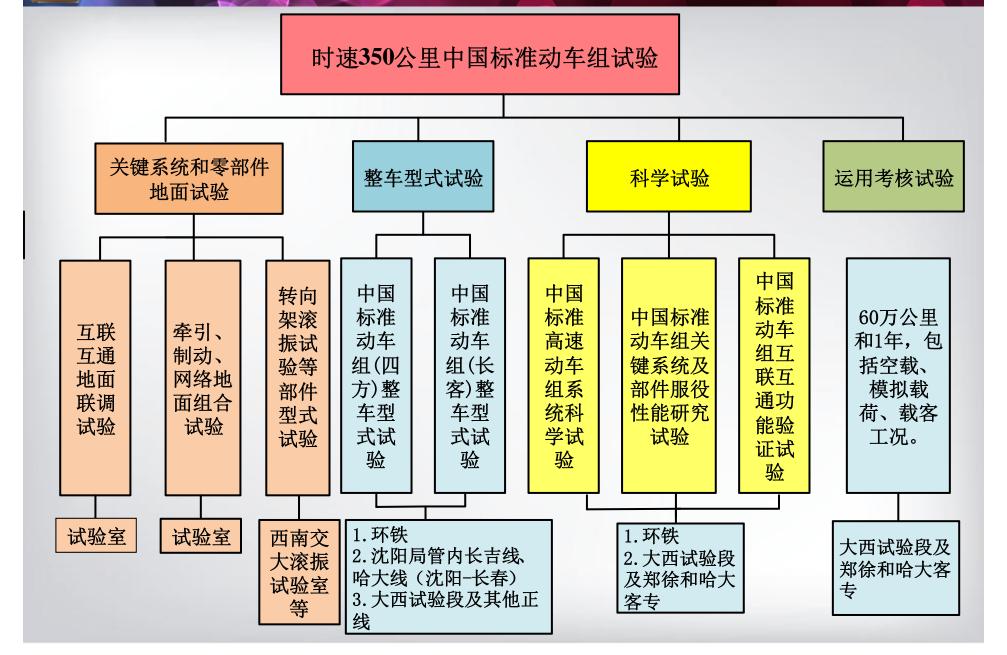
统一电气接口 实现逻辑互通

互操作

统一操作界面 及工作模式 实现互操作

持续技术创新 驱动高铁发展

TCMS产品全寿命周期虚拟仿真管理平台



HMI显示界面

司控台

持续技术创新 驱动高铁发展

2015年8月~10月:在北京环行铁道试验基地开展了静态和低速 (160km/h及以下)试验。

2015年10月~2016年2月:在大西综合试验段开展了正线试验,最高试验速度385km/h。

2016年7月15日 - 在郑徐线上成功进行420公里时速重联和交会试验。

- ✓ 安全性方面,设置智能化感知系统,实现对列车全方位监测;设置地震预警系统,提高主动安全性。
- ✓ 可靠性方面,按最高等级(设计寿命30年或1500万公里)考核 动车组主要结构部件。
- ✓ 舒适性方面,优化旅客界面与司乘界面,增大乘坐空间,采取减振降噪措施,提供无线wifi服务。
- ✓ 节能环保方面,优化列车头型及车体空气动力学性能,头车气动阻力比现有CRH380系列减小7%~12%以上;采用轻量化材料,降低持续运行能耗和噪音。

高铁技术创新

主要体会

✓ 一是党中央、国务院的正确决策和高度重视。党中央、国务院历来重视铁路建设发展,特别是党的十八大以来,党中央对加快高铁技术创新和发展高铁提出明确要求,国家出台了一系列支持铁路建设发展的政策措施;

✓ 二是敢于担当、勇于创新。科研和试验中必然存在很多不确定因素和技术风险。铁路科技系统广大科技工作者以高度的主人翁责任感和历史使命感,大力弘扬"振奋、担当、创新"精神。

✓ 三是充分发挥产学研用紧密结合的铁路技术创新体系优势。总公司积极 承担作为创新牵头企业的职责,组织行业内外产学研用相关单位形成大 团队,充分发挥铁路运输、装备制造和设计施工企业在创新投入、研究 开发和成果应用方面的主体作用,充分发挥国家科研机构的骨干、引领 作用以及高等院校的人才与基础理论研究优势,构建了各方共同参与的 技术创新体系,形成了高铁技术创新的强大合力。

✓ 四是形成科研、试验有机衔接的技术创新链。系统开展基础理论研究和关键技术攻关,组织开展研究、设计、制造;通过仿真测试、实车正线验证等一系列试验验证手段提高科研成果的可靠性。

女性科技工作者

优势

- ✓ 理论扎实,素质高,外语水平高,沟通能力强
- ✓ 认真、细心、耐心、有韧性
- ✓ 客观公正,外柔内刚

劣势

- ✓ 限于知识结构,考虑问题可能不全面
- ✓ 处理问题时可能感情用事

高铁技术发展

未来趋势

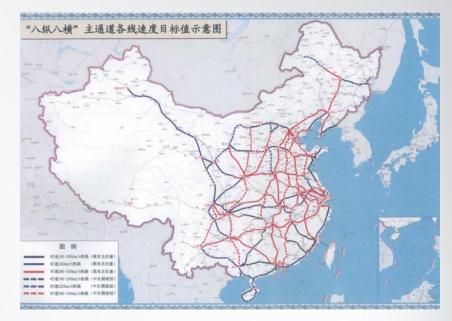
四纵四横 初步建成

按照2008年版《中长期铁路网规划》

四纵包括:京沪高铁/京广高铁/京哈客运专线/东南沿海客运专线

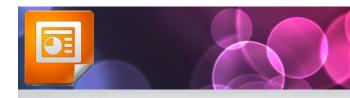
四横包括:徐兰客运专线/沪昆客运专线/青太客运专线/沪汉蓉客

运专线


随着宝兰高铁开通运营, 目前四纵四横中还剩纵向的京 沈高铁,和横向的青岛至石家 庄高铁,仍在建设当中。

八纵八横 路网规划

按照2016版《中长期铁路网规划》,将形成以"八纵八横"主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网。


路网规模 高铁里程 覆盖范围

2020年 15万公里 3万公里 80%以上大城市

2025年 17.5万公里 3.8万公里 网络进一步扩大,路网结构更加优化

- 一、技术标准工作方面,着力提升技术标准的先进性、经济性、 适用性,进一步完善具有中国特色的铁路技术标准体系。
- 二、知识产权工作方面,积极完善知识产权管理工作机制,引导课题承担单位积极开展成果转化和技术推广工作,全面开展动车组知识产权布局。
- 三、开发及实验平台建设工作,积极推进国家级研究实验平台建设。

绿色+智能将成为未来动车组的发展趋势

《中国制造2025》就高端装备制造列出了10个重点领域,其中先进轨道交通装备被列为其中之一。应进一步加快新材料、新技术和新工艺的应用研究,突破体系化安全保障、节能环保、数字化智能化网络化技术,重点研制绿色智能动车组以适应不断增长的国内外需求。

近期,国务院印发《新一代人工智能发展规划》,从战略态势、总体要求、重点任务等六大方面指明了我国新一代人工智能发展的前景方向。 发展自动驾驶轨道交通系统,加强车载感知、自动驾驶、车联网、物联网等技术集成和配套,开发交通智能感知系统,形成我国自主的自动驾驶平台技术体系和产品总成能力。

大数据技术应用

2015年8月31日,国务院印发《促进大数据发展行动纲要》,将 全面推进我国大数据的发展和应用。

我国铁路将积极研发大数据技术在铁路领域的应用,加强对铁路历史海量数据的挖掘、分析和总结,搭建图表、标签云、历史流和空间信息流等形式的可视化平台,为铁路发展的决策和管理提供重要支撑手段。

谢谢!